Flap endonucleases pass 5′-flaps through a flexible arch using a disorder-thread-order mechanism to confer specificity for free 5′-ends

نویسندگان

  • Nikesh Patel
  • John M. Atack
  • L. David Finger
  • Jack C. Exell
  • Peter Thompson
  • Susan Tsutakawa
  • John A. Tainer
  • David M. Williams
  • Jane A. Grasby
چکیده

Flap endonucleases (FENs), essential for DNA replication and repair, recognize and remove RNA or DNA 5'-flaps. Related to FEN specificity for substrates with free 5'-ends, but controversial, is the role of the helical arch observed in varying conformations in substrate-free FEN structures. Conflicting models suggest either 5'-flaps thread through the arch, which when structured can only accommodate single-stranded (ss) DNA, or the arch acts as a clamp. Here we show that free 5'-termini are selected using a disorder-thread-order mechanism. Adding short duplexes to 5'-flaps or 3'-streptavidin does not markedly impair the FEN reaction. In contrast, reactions of 5'-streptavidin substrates are drastically slowed. However, when added to premixed FEN and 5'-biotinylated substrate, streptavidin is not inhibitory and complexes persist after challenge with unlabelled competitor substrate, regardless of flap length or the presence of a short duplex. Cross-linked flap duplexes that cannot thread through the structured arch react at modestly reduced rate, ruling out mechanisms involving resolution of secondary structure. Combined results explain how FEN avoids cutting template DNA between Okazaki fragments and link local FEN folding to catalysis and specificity: the arch is disordered when flaps are threaded to confer specificity for free 5'-ends, with subsequent ordering of the arch to catalyze hydrolysis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Flap endonucleases pass 50-flaps through a flexible arch using a disorder-thread-order mechanism to confer specificity for free 50-ends

Flap endonucleases (FENs), essential for DNA replication and repair, recognize and remove RNA or DNA 50-flaps. Related to FEN specificity for substrates with free 50-ends, but controversial, is the role of the helical arch observed in varying conformations in substrate-free FEN structures. Conflicting models suggest either 50-flaps thread through the arch, which when structured can only accommo...

متن کامل

Interstrand disulfide crosslinking of DNA bases supports a double nucleotide unpairing mechanism for flap endonucleases.

Flap endonucleases (FENs) are proposed to select their target phosphate diester by unpairing the two terminal nucleotides of duplex. Interstrand disulfide crosslinks, introduced by oxidation of thiouracil and thioguanine bases, abolished the specificity of human FEN1 for hydrolysis one nucleotide into the 5'-duplex.

متن کامل

Substrate recognition and catalysis by flap endonucleases and related enzymes.

FENs (flap endonucleases) and related FEN-like enzymes [EXO-1 (exonuclease-1), GEN-1 (gap endonuclease 1) and XPG (xeroderma pigmentosum complementation group G)] are a family of bivalent-metal-ion-dependent nucleases that catalyse structure-specific hydrolysis of DNA duplex-containing nucleic acid structures during DNA replication, repair and recombination. In the case of FENs, the ability to ...

متن کامل

The wonders of flap endonucleases: structure, function, mechanism and regulation.

Processing of Okazaki fragments to complete lagging strand DNA synthesis requires coordination among several proteins. RNA primers and DNA synthesised by DNA polymerase α are displaced by DNA polymerase δ to create bifurcated nucleic acid structures known as 5'-flaps. These 5'-flaps are removed by Flap Endonuclease 1 (FEN), a structure-specific nuclease whose divalent metal ion-dependent phosph...

متن کامل

Comparative Perfusion Analysis of Free Muscle-Sparing Versus Pedicle Transverse Rectus Abdominis Myocutaneous (TRAM) Flaps in Vivo in the Peri-Operative and Late Post-Operative Periods

BACKGROUND Current teaching suggests increased perfusion in free transverse rectus abdominis myocutaneous (TRAM) flaps over pedicled TRAM flaps, broadening indications for its use in high risk patients. This study compared perfusion analysis of free muscle-sparing versus pedicle TRAM flaps in vivo in the peri-operative and late post-operative periods. METHODS The SPY-Elite system using...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 40  شماره 

صفحات  -

تاریخ انتشار 2012